Ministry of Higher Education

Giza Higher Institute for Eng. & Tech.

Civil Engineering Department

Course Name: Theory of Structures (3)

Course Code: CIV 301

Academic Year : 2015–2016

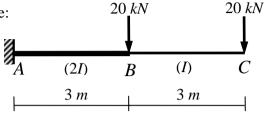
Semester: First

Level: 3rd

Time: 11/2 Hours Date: 22/11/2015

Examiner: Dr. M. Abdel-Kader

Answer of Mid-Term Exam


Question (1): (10 Marks)

For the shown beam, using the **moment-area method**, determine:

- (a) the deflection at B
- (b) the slope at C
- (c) the deflection at C

and sketch the elastic curve of the beam.

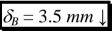
$$EI = 90.0 \times 10^6 N.m^2$$

Solution:

The bending moment diagram may be drawn as shown.

(a) the deflection at B

The deflection at B is equal to the deviation of point B relative to the tangent of the elastic curve at point A, $t_{B/A}$. Applying the second moment-area theorem, then


$$\delta_{B} = t_{B/A}$$

$$= \frac{1}{EI} \left[\text{First moment of area of M - diagram between } A \text{ and } B \text{ about } B \right] \quad 40$$

$$= \frac{1}{EI} \left[Area_{AB} . \overline{X}_{B} \right] = \frac{1}{2EI} \left[(-3 \times 60)(1.5) + (-\frac{1}{2} \times 3 \times 120)(2) \right]$$

$$= -\frac{315}{EI} = -\frac{315}{90000} = -0.0035 \ m = 3.5 \ mm \downarrow$$

$$\delta_{B} = \frac{3.5}{EI} = \frac{3.5}{90000} = -0.0035 \ m = 3.5 \ mm \downarrow$$

(b) the slope at C

Since the slope at $A(\theta_A)$ is equal to zero, the change in slope between the tangents of the elastic curve at points C and A (θ_{CA}) is equal to the slope at C (θ_{C}),

$$\theta_{CA} = \theta_C - \theta_A = \theta_C - 0 = \theta_C$$

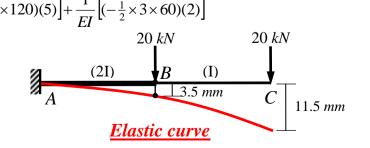
Apply the first moment-area theorem, then

Apply the first moment-area theorem, then
$$\theta_{C} = \theta_{CA} = \frac{1}{EI} \left[\text{Area of M - diagram between the points } A \text{ and } C \right]$$

$$= \frac{1}{EI} \left[Area_{AC} \right] = \frac{1}{2EI} \left[(-3 \times 60) + (-\frac{1}{2} \times 3 \times 120) \right] + \frac{1}{EI} \left[-\frac{1}{2} \times 3 \times 60 \right] = -\frac{270}{EI} = -\frac{270}{90000} = -0.003 \ rad$$

$$\theta_{C} = 0.003 \ rad = 0.172^{\circ} \ \text{C}$$

(c) the deflection at C


 $\delta_C = t_{C/A} = \frac{1}{EI}$ [First moment of area of M - diagram between A and C about C]

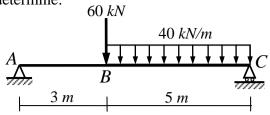
$$= \frac{1}{EI} \left[Area_{AC}.\overline{X}_{C} \right] = \frac{1}{2EI} \left[(-3 \times 60)(4.5) + (-\frac{1}{2} \times 3 \times 120)(5) \right] + \frac{1}{EI} \left[(-\frac{1}{2} \times 3 \times 60)(2) \right]$$

$$= -\frac{1035}{EI} = -\frac{1035}{90000} = -0.0115 \, m$$
(2I)

$$= 11.5 \ mm \downarrow$$

 $\delta_C = 11.5 \ mm \downarrow$

Ouestion (2): (10 Marks)


For the shown beam, using the **conjugate beam method**, determine:

- (a) the slope at A
- (b) the slope at B
- (c) the deflection at B

and sketch the elastic curve of the beam.

E = 200 GPa

 $I = 290 \times 10^6 \ mm^4$

 $40 \ kN/m$

 $C_{v} = 160 \, kN$

125 kN.m

 $R_C = 836.5 \text{ kN.m}^2$

60 kN

300 kN.m

 W_1

3 m

 W_2

 W_3

5 m

3 m

=100 kN

 $R_A = 780.2 \text{ kN.m}^2$

Solution:

Reaction:

$$+ \nabla \sum M_C = 0$$
:

$$A_{v}(8) - 60(5) - 40 \times 5(2.5) = 0 \implies A_{v} = 100 \ kN \uparrow$$

$$+\uparrow \sum F_{v} = 0$$
:

$$A_v + C_v - 60 - 40 \times 5 = 0 \implies C_v = 160 \ kN \uparrow$$

Construct the bending moment diagram of the real beam.

The resulting moment diagram is then loaded to the conjugate beam.

For the conjugate beam, determine the elastic reaction (R_A and R_C) at supports.

$$W_1 = \frac{1}{2} \times 3 \times 300 = 450 \text{ kN.m}^2$$

$$W_2 = \frac{1}{2} \times 5 \times 300 = 750 \text{ kN.m}^2$$

$$W_3 = \frac{2}{3} \times 5 \times 125 = 1250 / 3 \text{ kN.m}^2$$

$$+ \nabla \sum M_C = 0$$

$$R_A(8) - W_1(5+1) - W_2(2 \times 5 / 3) - W_3(5 / 2) = 0$$

 $8R_A = 450(6) + 750(10 / 3) + (1250 / 3)(2.5) \rightarrow R_A = 780.2 \text{ kN.m}^2$

$$+1 \sum F_y = 0 \implies R_C = 836.5 \text{ kN.m}^2$$

$$E = 200 \ GPa = 200 \times 10^6 \ kN/m^2$$

$$E = 200 \text{ } GPa = 200 \times 10^6 \text{ } kN/m^2$$
 $I = 290 \times 10^6 \text{ } mm^4 = 290 \times 10^{-6} \text{ } m^4$ $EI = 58000 \text{ } kN.m^2$

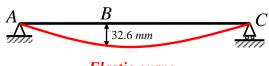
$$EI = 58000 \text{ kN.m}^2$$

(a) the slope at A

$$\theta_A = R_A / EI = 780.2 / 58000 = 0.0135 \ rad = 0.77^{\circ}$$

 $=0.77^{\circ}$

(b) the slope at B


$$\theta_B = Shear \ at \ B / EI = (R_A - W_1) / 58000 = (780.2 - 450) / 58000 = 0.0057 \ rad = 0.33^{\circ}$$

 $\theta_R = 0.33^{\circ}$

(c) the deflection at B

$$\delta_B = Moment \ at \ B / EI = (R_A \times 3 - W_1 \times 1) / 58000 = 1890.6 / 58000 = 0.0326 \ m = 32.6 \ mm$$

 $\delta_B = 32.6 \ mm$

